Fission Barrier Landscape

Larry Phair and Luciano Moretto Lawrence Berkeley National Laboratory

Motivation: Structure of deformed objects

Stationary point:

⇒ Fission spectroscopy

Fission barrier B_f : mass of saddle $M_S = M_{gs} + B_f$ Pairing (Δ_0)
shell corrections (Δ_{shell})
single particle level density (g)
Congruence Energy (Wigner term masses)

What is known about the detailed properties of the saddle point?

- Very little compared to ground state.
- ~100 knownbarriers
 - Typically restricted to very heavy nuclei
 - Poor precision

Systematic data sets

- Precision data
 - High purity targets
 - Parts per billion uranium
 - High purity beams

Year	Reaction	Compound Nucleus
1997	3 He + 182184,186 W	185-187,189Os
1997	3 He + $^{206-208}$ Pb	²⁰⁹⁻²¹¹ Po
1999	3 He + 204 Pb	²⁰⁷ Po
1999	d + ^{204,206-208} Pb	206,208-210 Bi
1999	⁴ He + ^{204,206-208} Pb	208,210-212Po
2000	p + ^{204,206-208} Pb	205,207-209Bi
2002	³ He+ ^{192,194-196,198} Pt	195,197-199,201Hg
2002	⁴ He+ ^{192,194-196,198} Pt	196,198-200,202Hg

Example of data

Example of data

Old vs. New analysis

- Assumptions: old analysis
 - Single compound nucleus
 - Only two channels: n emission & fission
 - First chance fission only

New analysis

- Fit a chain of neighboring compound nuclei
- Multiple chance

$$\sigma_f = \sum_{i=0}^{l_{\text{max}}} \sigma_f^{(i)} = \sum_{l=0}^{l_{\text{max}}} \sum_{i=0}^{l_{\text{max}}} (2l+1)\pi \lambda^2 P_f^{(i)}(l)$$

Each *n* carries B_n+2T

$$P_f(E) \propto \frac{\Gamma_f}{\Gamma_n} \propto \frac{\rho_f \left(E - B_f - E_r^S \right)}{\rho \left(E - B_n - E_r^{gs} - \Delta_{\text{shell}}^{n-1} \right)}$$

New analysis

- Fit a chain of neighboring compound nuclei
- Multiple chance

$$\sigma_f = \sum_{i=0}^{l_{\text{max}}} \sigma_f^{(i)} = \sum_{l=0}^{l_{\text{max}}} \sum_{i=0}^{l_{\text{max}}} (2l+1)\pi \lambda^2 P_f^{(i)}(l)$$

Each *n* carries B_n+2T

Fusion cross sections

- Useful to make the Bass model more general and include it as part of the fit.
 - Low energy part: $\sigma_0 = \pi R^2 (1 V/E)$
 - High energy part: $\sigma_0 E = \pi R^2 (E_2 V)$
- Marry the two behaviors: adds two more parameters to fit (R, E_2-V)

$$\sigma_0 = (E_2 - V) \frac{\pi R^2}{E} \tanh \left(\frac{E - V}{E_2 - V} \right)$$

Summary of parameters

Parameter	Name	Nominal value
Fission barrier	B_f	$B_{ ext{macro}}$ - $\Delta_{ ext{shell}}$
Shell correction	$\Delta_{ m shell}$	nominal
Ratio level density parameters	a_f/a_n	1.0 - 1.07
Geometric cross section	$\pi(\mathbf{r}_0(A_b^{1/3}+A_t^{1/3}))^2$	1.2-1.5 fm
Characteristic velocity	$E_2-V=1/2\mu v^2$	

- 6 Po
 compound
 nucleus data
 sets: ²⁰⁷⁻²¹²Po
- 2 overlapping sets: ^{211,210}Po
- 9 free parameters

Fit quality

• The fits are not so different in quality. However, the fit parameters are very different.

$$P_f(E) \propto \frac{\Gamma_f}{\Gamma_n} \propto \frac{\rho_f \left(E - B_f - E_r^S \right)}{\rho \left(E - B_n - E_r^{gs} - \Delta_{\text{shell}}^{n-1} \right)}$$

Fit quality

• The fits are not so different in quality. However, the fit parameters are very different.

$$P_f(E) \propto \frac{\Gamma_f}{\Gamma_n} \propto \frac{\rho_f \left(E - B_f - E_r^S \right)}{\rho \left(E - B_n - E_r^{gs} - \Delta_{\text{shell}}^{n-1} \right)}$$

Fit quality

• The fits are not so different in quality. However, the fit parameters are very different.

Test: ground state shell correction

- Po, Bi, Pb, Os chains
- "Old" fits (single system, first-chance fission only) have large errors: ±2MeV
- "New" fits: tens of keV. Agreement better than 100 keV
- "Local" measures of shell
- Equivalently accurate fission barriers

Potential analyses

- Pairing
- Shell corrections
- Congruence energy
- Level density
- Fission delay times

Potential analyses

- Pairing
- Shell corrections
- Congruence energy
- Level density
- Fission delay times

Level density at the saddle

Studying the surface area dependence of the level density parameter a

Isotopes	a_f/a_n	estimate
Os	1.062	1.095
Po	1.028	1.079

Toke & Swiatecki, Nucl. Phys. A372, 141 (1981)

$$a = \frac{A}{14.61 \text{ MeV}} \left(1 + \frac{4}{A^{1/3}} F_2 \right)$$

F2 is the surface area in units of a sphere

Fission delay time

- Fission decay width is suppressed during the time it takes to get to the saddle configuration.
- Fission probability is suppressed.
- Approximate suppression with step function

Fission delay time

- Fission decay width is suppressed during the time it takes to get to the saddle configuration.
- Fission probability is suppressed.
- Approximate suppression with step function

$$\Gamma_f = \Gamma_f^{(\infty)} \int_0^\infty \zeta(t) \, \frac{N(t)}{N_0} \, \lambda_{\rm CN} \, dt = \Gamma_f^{(\infty)} \int_{\tau_D}^\infty \frac{N(t)}{N_0} \, \frac{dt}{\tau_{\rm CN}}$$

Introducing fission delay time TD

Balance equations:

$$\frac{dN_i(t)}{dt} = \lambda_n^{(i-1)} N_{i-1}(t) - \lambda_n^{(i)} N_i(t), \qquad (t \le \tau_D)
\frac{dN_i(t)}{dt} = \lambda_n^{(i-1)} N_{i-1}(t) - \lambda_{CN}^{(i)} N_i(t), \qquad (t \ge \tau_D)$$

$$\begin{split} P_f^{\mathrm{t}} &= \sum_{i=0}^{} P_f^{(i)}, \longleftarrow \text{Unmodified } P_f \\ P_f^{(i)} &= \int_{\tau_D}^{\infty} \lambda_f^{(i)} \frac{N_i(t)}{N_0} \, dt = P_f(Z, A-i, E - \sum_{j=1,i}^{} \Delta E_j) \\ &\times \sum_{j=0}^{} b_{i,j} \, \frac{\lambda_{\mathrm{CN}}^{(i)}}{\lambda_{\mathrm{CN}}^{(j)}} \, \exp(-\tau_D/\tau_{\mathrm{CN}}^{(j)}), \end{split}$$

Correction

$$\begin{split} \frac{N_i(t)}{N_0} &= \sum_{j=0}^{j=i} a_{i,j} \, \exp(-\lambda_n^{(j)} \, t), \qquad (t \le \tau_D) \\ a_{i,j} &= \frac{\lambda_n^{(i-1)} a_{i-1,j}}{\lambda_n^{(i)} - \lambda_n^{(j)}}, \qquad j = 0, 1, 2, \cdots, i-1, \\ a_{i,i} &= -\sum_{j=0}^{j=i-1} a_{i,j}, \\ a_{0,0} &= 1.0; \\ \frac{N_i(t)}{N_0} &= \sum_{j=0}^{j=i} b_{i,j} \, \exp(-\lambda_{CN}^{(j)} \, t), \qquad (t \ge \tau_D) \\ b_{i,j} &= \frac{\lambda_n^{(i-1)} b_{i-1,j}}{\lambda_{CN}^{(i)} - \lambda_{CN}^{(j)}}, \qquad j = 0, 1, 2, \cdots, i-1, \\ b_{i,i} &= \exp(\lambda_{CN}^{(i)} \tau_D) \left[\frac{N_i(\tau_D)}{N_0} - \sum_{j=0}^{j=i-1} b_{i,j} \exp(-\lambda_{CN}^{(j)} \tau_D) \right] \\ b_{0,0} &= \exp((\lambda_{CN}^{(0)} - \lambda_n^{(0)}) \tau_D). \end{split}$$

Estimate of TD

- Assume experimental shell
- Add delay time TD (step function)
- Suppresses first chance fission
- $\tau_D = 10 \times 10^{-21}$ seconds

Physics Letters B 518, 221 (2001)

16

Now and the Future

Fission Barrier Measurements with Stable and Radioactive Beams

Fission Barrier Measurements with Fragmentation Beams from RIA

Conclusions & Outlook

- Saddle mass surface still largely unexplored
- Program of systematic fission measurements and systematic analysis (global fits)
- Successes so far:
 - Accurate B_f
 - Ground state shell (determined "locally")
 - Time delay $\tau_D=10x10^{-21}$ seconds
- Future:
 - Congruence energy (shape dependence)
 - Single particle level densities at the saddle
 - Pairing at the saddle
 - Shell effects at the saddle